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We further pursue the analysis of a mean-field model recently proposed by Sonnetet al. fPhys. Rev. E67,
061701s2003dg to describe nematic biaxial phases. This model, which is based on a simplified version of
Straley’s pair potential, is characterized by the prediction of a tricritical point along the transition line between
uniaxial and biaxial phases. We show that the same model predicts another tricritical point, but along the line
of the direct isotropic-to-biaxial transition. Our prediction is quantitative, as it stems from an analytical
criterion for tricriticality.
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I. INTRODUCTION

The search for thermotropic biaxial liquid crystals has re-
cently received a fresh impetus from new experimental evi-
dence that appears to support their existencef1–3g. As re-
marked by Luckhurst, “The announcement has created
considerable excitement, for it opens up new areas of both
fundamental and applied research. It seems that a Holy Grail
of liquid-crystal science has been found”f4g.

The very existence of biaxial liquid crystal phases finds
its justification in the intimate structure of liquid crystal mol-
ecules, which are indeed more similar to flat platelets than to
slender rods. Thermal fluctuations prevent this microscopic
symmetry from emerging at the macroscopic scale, if rota-
tions of molecules about their long axis are efficient enough
to create an effective rotationally symmetric molecule able to
replace the actual flat molecule in its interactions with the
neighbors. If no remains are left at the macroscopic scale of
the peculiar microscopic symmetry, no thermotropic biaxial
phase can be expected to result from collective molecular
cooperation. Only if molecular rotations are somewhat ham-
pered by mutual molecular interactions is there hope that a
biaxial phase manifests itself.

The first theoretical prediction of biaxial nematics is
unanimously attributed to Freiserf5,6g. A broad review of
both theoretical and experimental attempts made to unveil
the secrets of these elusive phases can be found in Ref.f7g.
More recently, a mean-field model for biaxials was proposed
that departs from most theoretical avenues taken in the past
f8g. This model predicted atricritical point in the transition
from uniaxial to biaxial nematics, that is, a point where the
transition changes from first to second order. The existence
of this point, which was the major novelty introduced in the
theory of biaxial phases in Ref.f8g, has so far been con-

firmed by both a Monte Carlo simulationf9g and an experi-
mental studyf10g.

The occurrence of a tricritical point in the phase diagram
of biaxial nematics calls for a more systematic study to iden-
tify all such points and the sides of the transition lines that
indeed correspond to second-order phase transitions. This pa-
per is devoted to such a study.

The paper is organized as follows. In Sec. II, we recall the
model for biaxial phases employed here. In Sec. III, we di-
gress slightly from the main development of the paper to
illustrate an analytical criterion to find tricritical points in a
setting sufficiently general to encompass our biaxial model
as a special case. In Sec. IV, with the aid of the criterion
illuminated in Sec. III, we predict the existence of a tricritical
point for biaxial liquid crystals in a range of parameters not
yet explored. Finally, in Sec. V, we draw the main conclusion
of this paper and comment on the perspectives that it opens.
For completeness, in a closing Appendix, we also contrast
the criterion presented here with the known extensions
f11–13g of Griffiths’ criterion f14,15g.

II. MODEL FOR BIAXIAL NEMATICS

In Ref. f8g, Straley’s molecular pair potentialf16g has
been studied beyond the range of validity of both London’s
dispersion force approximation and Freiser’s modelf5,6g,
which are intimately connected to one another. The general
form of Straley’s pair potentialV can be expressed by repre-
senting each interacting molecule by a pair of traceless, sym-
metric, second-rank tensorssq ,bd, where

q ª m ^ m −
1

3
I s1d

is purely uniaxial around the long molecular axism, and

b ª e ^ e− e' ^ e' s2d

is fully biaxial and orthogonal toq. The orthonormal basis
he,e' ,mj is the eigenframe of any molecular polarizability
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tensor. Lettingsq ,bd and sq8 ,b8d represent two interacting
molecules, we writeV as

V = − U0hq ·q8 + gsq ·b8 + b ·q8d + lb ·b8j, s3d

whereU0.0 is a typical interaction energy, andl andg are
model parameters.

Macroscopically, the liquid crystal is described by two
order tensors, both defined as ensemble averages:

Q ª kql, B ª kbl.

Under the assumption thatQ andB have a common eigen-
frame hex,ey,ezj, which is plausible in the absence of any
external distorting cause, they can be represented as follows:

Q = SSez ^ ez −
1

3
ID + Tsex ^ ex − ey ^ eyd, s4d

B = S8Sez ^ ez −
1

3
ID + T8sex ^ ex − ey ^ eyd, s5d

whereS, T, S8, T8 are the order parameters of the system.Q
represents the average quadrupolar distribution of the long
molecular axis: its degree of biaxiality measured byT re-
flects the lack of axial symmetry in the orientational distri-
bution function.B reflects on a macroscopic scale the intrin-
sic biaxiality of molecules and the role it plays in the
molecular interaction: likeQ, in general,B has both a
uniaxial and a biaxial component.S is precisely Maier-
Saupe’s order parameterf17g: whenT, S8, andT8 all vanish,
the resulting phase is purely uniaxial. We would call a phase
uniaxial even when onlyS andS8 do not vanish, though the
origin of S8 is to be retraced in the intrinsic molecular biaxi-
ality. Similarly, T andT8 express degrees of biaxiality of two
different origins.

In the mean-field approximation adopted in Ref.f8g, a
single molecule experiences the pseudopotential

Usq,bd = − U0hQ ·q + gsQ ·b + B ·qd + lB ·bj. s6d

Accordingly, the partition functionZ and the free energyF
are

ZsQ,B,b,l,gd =E
T

exphbfQ ·q + gsQ ·b + B ·qd

+ lB ·bgj, s7d

FsQ,B,b,l,gd = U0H1

2
Q ·Q + gQ ·B +

l

2
B ·B

−
1

b
lnSZsQ,B,b,l,gd

8p2 DJ , s8d

whereT is the manifold described by all possible molecular
orientationshe,e' ,mj, bªU0/kBt, kB is the Boltzmann con-
stant, andt is the absolute temperature. In Ref.f8g, the case
where g=0 andl ranges in the intervalf0, 1

3
g was exten-

sively considered and a tricritical point was discovered in the
phase diagram. More precisely, it was shown that for small
enough values ofl the classical Maier-Saupe first-order tran-
sition from the isotropic phase is followed, at a large enough

value of b, by a second-order transition to a biaxial phase
characterized byT8Þ0 and by bothT andS8 almost vanish-
ing. This scenario changes qualitatively whenl grows: the
transition to the biaxial phase becomes first order, as shown
by solving numerically the equilibrium equations, thus dis-
closing a tricritical point.

Although, strictly speaking, all admissible states are de-
scribed by four scalar order parameters, two, namely,T and
S8, can be set equal to zero at all equilibrium phasesf8g, and
the free energyF in Eq. s8d turns out to be a function ofS
andT8 only, even inT8. Henceforth we shall call

F = FsS,T8,b,ld s9d

the function obtained from Eq.s8d by settingg=0 and S
=T8=0.

It would be desirable to apply an analytical criterion to
find all tricritical points in the phase diagram associated with
the free energy in Eq.s9d for all positiveb andl. The clas-
sical criterion for tricriticality put forward by Griffiths
f14,18g applies only to free energies depending on a single
order parameter. Extensions of this criterion to free energies
with more than one order parameter have already been pro-
posed in the literaturef11–13g, under the assumption that one
order parameter is dominant and all others depend on it. For
clarity, in the following section we derive a criterion appro-
priate to our case, where the two order parameters are in
principle independent of one another. In Appendix B we
show for completeness that the criterion known in the case of
a single dominant order parameter agrees with ours.

III. TRICRITICALITY CRITERION

Here we consider a smooth free-energy functionF as in
Eq. s9d, not necessarily given in the form of Eq.s8d. Of this
latter, we only retain the following symmetry property

FsS,T8,b,ld = FsS,− T8,b,ld, s10d

which makes equilibria withT8=0 the natural candidates for
states whence a second-order phase transition could develop.

At equilibrium, for givenb andl, the order parameters of
the system solve the equations

]F
]S

sS,T8,b,ld = 0, s11d

]F
]T8

sS,T8,b,ld = 0. s12d

These equations may possess more than a single rootsS,T8d,
each of which represents an equilibrium phase. We calllo-
cally stablea phase whereF attains a relative minimum and
globally stablea phase whereF attains its absolute mini-
mum. We assume that the system always admits a globally
stable phase. First letl0 be given. Suppose that for allb
.0 there is an equilibrium phase described byS=S0sb ,l0d
and T8=0. Conventionally, we say thatsS0,0d represents a
reference statefor the system. It may represent a stable phase
of the system and it may not: it could be any equilibrium
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state of the system whose vicinity is worth exploring. We
denote byfH0g the Hessian matrix ofF at the pointsS0,0d.
By the symmetry requirements10d, fH0g is diagonal, and its
two eigenvalues are given by

SSsb,l0d ª
]2F
]S2 „S0sb,l0d,0,b,l0…, s13d

ST8sb,l0d ª
]2F
]T82„S0sb,l0d,0,b,l0…. s14d

Our strategy will be to look for other equilibrium phases near
a given reference state and, if there are any, to see which is
likely to be locally stable. The success of this strategy will
clearly depend on the choice of the reference state. We ex-
pand the free energyF in power series aboutsS0,0d:

FsS0 + dS,T8d = FsS0,0d + F1T82 + F2T84 + F3T82dS

+ F4sdSd2 + F5sdSd4 + F6T82sdSd2 + F7sdSd3

+ Os5d, s15d

where use has been made again of the symmetry requirement
s10d. The coefficientshFjj j=1,. . .,7 are related to the partial
derivatives ofF with respect toS and T8 at the reference
state: they are all functions ofsb ,l0d. In particular, also by
Eqs.s13d and s14d,

F1 ª
1

2
ST8sb,l0d, s16d

F2 ª
1

24
S ]4F

]T84D
sS0,0d

, s17d

F3 ª
1

2
S ]3F

]T82]S
D

sS0,0d
, s18d

F4 ª
1

2
SSsb,l0d. s19d

If there exist equilibrium phases near the reference state, they
can be found by requiring the function in Eq.s15d to be
stationary, that is, by solving the equations

F3T82 + 2F4dS+ 4F5sdSd3 + 2F6T82dS+ 3F7sdSd2 = 0,

s20d

F1T8 + 2F2T83 + F3T8dS+ F6T8sdSd2 = 0. s21d

Under the assumption thatT8Þ0, to the lowest approxima-
tion, these equations reduce to the following linear system:

S2F4 F3

F3 2F2
DS dS

T82D = S 0

− F1
D . s22d

It is apparent from Eq.s22d that an additional single-
equilibrium phase fails to exist whenever

DF ª 4F2F4 − F3
2 = 0. s23d

This condition actually identifies thesingular line in the

planesb ,ld. More properly, we should momentarily think of
l as being freed from the assigned valuel0 and of
(S0sb ,ld ,0) as the continuation inl of the equilibrium so-
lution (S0sb ,l0d ,0). Thus, Eq.s23d explicitly becomes

DFsb,ld ª
]4F
]T84„S0sb,ld,0,b,l…

]2F
]S2 „S0sb,ld,0,b,l…

− 3S ]3F
]T82]S

„S0sb,ld,0,b,l…D2

= 0. s24d

When sb ,l0d does not belong to the singular line, the solu-
tion to Eq.s22d is admissible, that is, it deliversT82.0, only
if

F1F4DF , 0. s25d

Moreover, the equilibrium phase is close to the reference
statesS0,0d, if F1 is infinitesimal. For this reason we choose
the reference statesS0,0d such thatsb ,l0d is near thecritical
line, which is defined by the conditions

ST8sb,ld ª
]2F
]T82„S0sb,ld,0,b,l… = 0, s26d

SSsb,ld ª
]2F
]S2 „S0sb,ld,0,b,l… . 0, s27d

where the latter ensures that the equilibrium phase
sS0sb ,ld ,0d is locally stable against all perturbations in theS
order parameter. Whensb ,l0d lies precisely on the critical
line, F1 vanishes in Eq.s22d and the equilibrium phases re-
duce to the reference state: all equilibrium solutions corre-
sponding to the critical line can be thought of as states
whence additional equilibria are to bifurcate. Choosing
sb ,l0d near the critical line captures the bifurcation onset,
and so makes successful the strategy of finding more equi-
librium phases near the reference state.

As a consequence of inequalitys27d, F4 is positive in Eq.
s20d and this reduces the admissibility conditions25d to

F1DF , 0. s28d

This inequality is central in the following stability analysis.
At the lowest approximation, the Hessian matrix ofF com-
puted atsS0+dS,T8d, wheresdS,T8d solves Eq.s22d, is

fHg = S 2F4 2F3T8

2F3T8 2F1 + 12F2T82 + 2F3dS
D . s29d

SinceF4.0, the sign of detfHg suffices to characterize the
local stability of sS0+dS,T8d:

detfHg = 4F1F4 + 6T82s4F2F4 − F3
2d = − 8F1F4. s30d

Moreover, within the same approximation, the energy differ-
ence reads as

DF ª FsS0 + dS,T8d − FsS0,0d = −
F1

2F4

DF
. s31d

Our assert is that the intersection between the critical and
the singular lines, if not empty, is constituted of tricritical
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points, which represent states where the character of a phase
transition changes from first to second order. In Fig. 1, both
the critical lineC and the singular lineS are represented in
the planesl ,1 /bd. We assume that these curves cross at the
point C. DF vanishes alongS, and ST8 vanishes alongC.
Near C, a tubular neighborhood ofC is divided into four
parts byS and C, which we callA1, A2, A3, andA4. For
definiteness, we assume thatST8.0 in A2øA3 and ST8
,0 in A1øA4, while DF.0 in A1øA3 and DF,0 in
A2øA4. By inequality s28d, A1øA2 is the admissible set,
that is, the set where there are equilibrium phases near the
reference state. By Eqs.s30d and s31d, in A1 the additional
equilibrium phase is locally stable since detfHg.0 and it
possesses less energy than the reference state sinceDF,0.
Moreover, since thereST8,0, the reference state has be-
come unstable. Clearly, inA1 a further stable phase bifur-
cates from the reference state. Similarly, inA2 detfHg,0
andDF.0, while ST8.0. This means that the equilibrium
phase represents an unstable equilibrium with more energy
than the reference state, while the reference state is still
stable. Here no bifurcation occurs. Away from the admissible
set, the reference state is not accompanied by any other equi-
librium phase in its vicinity. The reference state itself is lo-
cally stable inA3 and unstable inA4. Since here we assume
that a globally stable phase always exists for the system,
when the parameters are chosen inA4, this phase must lie
away from the reference state. On the other hand, inA2 the
reference state could be either locally or globally stable.

Taking now the reference state inA3 as globally stable,
we conclude from the foregoing discussion that it migrates
slightly upon crossing the critical lineC from A3 into A1,
whereas it jumps abruptly upon crossing the pointC from A3
in A4. Such a behavior is only compatible with the presence
of a first-order transition line emanating fromC within A2
and with the interpretation of the portion of the lineC that
separatesA1 andA3 as a second-order transition line.

Thus,C is a tricritical point, because there two different
transition lines meet: one is first order, the other second or-
der. In Fig. 1, according to Griffiths’ notationf18g, first-order
transitions are represented by a solid line, while second-order
transitions are represented by a broken line.

In conclusion, thetricritical manifold is defined by Eqs.
s24d and s26d and the conditions

]2F
]T82„S0sb,ld,0,b,l… = 0, s32ad

]4F
]T84„S0sb,ld,0,b,l…

]2F
]S2 „S0sb,ld,0,b,l…

− 3S ]3F
]T82]S

„S0sb,ld,0,b,l…D2

. 0 s32bd

determine the portion of the critical line consisting of
second-order transition points.

Finally, we note for later use that a better approximation
for the equilibrium phase near the reference state can be
obtained in the admissible set from Eqs.s20d and s21d:

dS=
F1F3

4F2F4 − F3
2 − 2F1F6

, s33d

T82 =
sF1F6 − 2F2F4d

4F2F4 − F3
2 − 2F1F6

F1

F2
. s34d

These formulas are useful in sketching the bifurcating solu-
tion branches and in continuing them numerically. A similar
improvement of the lowest approximation employed above
can be obtained for both the determinant of the Hessian ma-
trix and the energy difference along the bifurcating branches
f19g.

IV. TRICRITICAL POINTS

In this section we apply the criterion presented above to
the free energyF in Eq. s8d for g=0 andl.0. We shall
choose as reference state either of the equilibrium phases
predicted by Maier-Saupe’s theory, to which the theory for
biaxial nematics in Sec. II reduces wheng=l=0.

As is well known, according to Maier-Saupe’s theory, the
isotropic phase corresponding toS=0 is accompanied by an-
other locally stable equilibrium phase as soon asb.b*

<6.73. This is the oriented nematic phase, which is charac-
terized by the largest positive rootS+sbd of the equilibrium
equation

]F
]S

= 0,

which for l=0 becomes

2

3
S+

1

3
+

1

2Sb
−

expsSbd
ÎpSbErfisÎSbd

= 0, s35d

where

FIG. 1. The tricritical pointC is identified as the intersection
between the critical lineC and the singular lineS in the plane
sl ,1 /bd. A1øA2 is the admissible set, where there is an equilib-
rium phase near the reference state. The heavy dashed line is a
second-order transition line, while the heavy solid line is a first-
order transition line, whose existence is predicted by the arguments
developed in the text.
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Erfisxd ª
2

Îp
E

0

x

et2dt for all x P R. s36d

For b.bc<6.81, the nematic phase has indeed lower free
energy than the isotropic phase, which is still locally stable,
and so the system undergoes a first-order phase transition.
For b.b* = 15

2 , the isotropic phase becomes locally unstable
and another equilibrium ordered phase with a negative order
parameterS−sbd arises; in the absence of any external field,
this phase never attains the least energy, and so it fails to be
globally stable. Whenl=0, the only phase transition under-
gone by the system occurs atb=bc, whereS condenses in
S+.

Taking as reference state the uniaxial phase described by
the pair(S+sbd ,0), we compute the following eigenvalues of
the Hessian matrixfH0g:

SSsbd =
2

3
F5

2
+

b

3
s2S+

2 − 2S+ − 1dG , s37d

ST8sb,ld =
1

12
lf24 +s3 − 10b − 14S+bdlg, s38d

where SS.0 for b.b* <6.73. The critical and singular
lines are represented by the equations

ST8 = 0 s39d

and

l4

27648S+
2 f2025 + 180s− 3 + 17S+ + 3S+

2db + 12s3 − 184S+

− 652S+
2 + 74S+

3db2 + 80S+s3 + 97S+ + 181S+
2 + 7S+

3db3

+ 16S+
2s− 65 − 192S+ + 3S+

2 + 254S+
3db4g = 0, s40d

respectively ssee also Appendix Ad. Thus, the tricritical
points are identified as the common roots of Eqs.s39d and
s40d.

Figure 2 shows both critical and singular lines described
by Eqs. s39d and s40d on the planesl ,1 /bd. In particular,
since the critical line is meaningful only whenSS.0, the
curve corresponding to Eq.s39d is restricted to the region
whereb.b* , and so it ends at the pointE1, whereb=b* .
Moreover, since forl.0 the roots of Eq.s40d are indepen-
dent ofl, the singular line has the equationb=bt, wherebt
is the root of the function ofb within brackets in Eq.s40d.
By use of the asymptotic behavior ofS+ for b→`,

FIG. 2. Phase diagram in the planesl ,1 /bd associated with a model for biaxialsf8g. The critical line relative to the uniaxial stateS
=S+ andT8=0 starts from the origin and ends inE1: it is confined to the stable manifoldb.b* . The heavily dashed portion of this line,
bounded by the lineb=bt

s1d, marks the second-order transition between uniaxial and biaxial phases.C1 is the first tricritical point. The critical
line relative to the isotropic phaseS=T8=0 is confined to the stable manifoldb,15/2: it starts from the pointE2 and goes to infinity. It
hosts the second tricritical pointC2 at b=bt

s2d; the regionsA1, A2, A3, andA4 have the same meaning as in Sec. III. The heavy dashed line
starting fromC2 represents second-order transitions between isotropic and biaxial phases. The heavy line represents first-order phase
transitions computed for 0,l,1/3 f8g: a bifurcation analysis is needed to know how the pointsA andC2 are to be joined.
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S+sbd .
1

2
S1 +Î1 −

6

b
D , s41d

it is easily shown that there exists a single rootbt
s1d. The

tricritical point C1 in Fig. 2 has the following coordinates:

sbt
s1d,lt

s1dd < s7.07,0.20d, s42d

with St=S+sbt
s1dd<0.53. It coincides with the point found in

Ref. f8g by inspecting the numerical solutions of the equilib-
rium equations. By applying Eq.s32bd, we conclude that the
portion of the critical line that marks a second-order transi-
tion between uniaxial and biaxial phases is the one heavily
dashed in Fig. 2. This figure also depicts the lines of first-
order transitions computed for 0,l,

1
3 in Ref. f8g.

A question that was not addressed in Ref.f8g is whether
the transition between isotropic and biaxial phases can pos-
sibly become second order. To answer this question, we also
study this model forl.

1
3 and we take the isotropic phase as

reference state in our criterion. We compute bothSS andST8,
for S=T8=0:

SSsb,ld ª
]2F
]S2 s0,0d =

1

3
−

2b

45
, s43d

ST8sb,ld ª
]2F
]T82s0,0d = l −

2l2b

5
. s44d

It follows from Eq. s43d that SS.0 for b,
15
2 and that the

critical line is represented by the equation

1

b
=

2l

5
. s45d

The singular line is nowssee also Appendix Ad

b3l4s34b − 105d = 0. s46d

It is clear that Eqs.s45d and s46d have only the root

sbt
s2d,lt

s2dd = S105

34
,
17

21
D , s47d

which identifies a second tricritical pointC2. By Eq. s32bd,
the heavy dashed line emanating in Fig. 2 fromC2 represents
the locus of second-order transitions between isotropic and
biaxial phases.

The criterion presented here can only predict the existence
of this second tricritical point, where the phase transition
between isotropic and biaxial phases becomes second order.
It says nothing on how to complete the phase diagram in the
plane sl ,1 /bd for 1

3 ,l,lt
s2d: this requires a bifurcation

analysis of the equilibrium phases, which will be undertaken
elsewheref19g.

V. CONCLUSION

It was remarked in Ref.f8g that the model proposed there
for biaxial nematics has a striking resemblance to McMill-
an’s model for smecticA phasesf20g, in that it predicts a
similar phase diagram with a tricritical point. The original
motivation of our paper was to find a criterion to locate tri-
critical points for biaxial liquid crystal phases, sufficiently
general to confirm the tricritical point already known and
possibly to predict other such points still unknown.

The main outcome of our study was to predict the exis-
tence of another tricritical point in the phase diagram for
biaxial nematics according to the model employed in Ref.
f8g, which should occur in a range of parameters not yet
explored. A bifurcation analysis of the whole class of equi-
librium phases predicted by the model in Ref.f8g is still
needed to complete the phase diagram. This study, which just
started, will be the object of a future paperf19g.

Another question soon to be addressed concerns the sec-
ond tricritical point we predict along the direct transition
between the isotropic and biaxial phases: does it persist when
the parameterg is also switched on? It has long been known
that for l=0 the term proportional tog in Straley’s pair
potential does not promote biaxial phasesf21g. It remains to
be seen whether increasingg for l.lt

s2d would cause the
reappearance of a uniaxial phase between the isotropic and
biaxial ones. This would bound the extent of the direct
uniaxial-to-biaxial transition, which is another distinctive
feature of the model proposed in Ref.f8g.

APPENDIX A: MATHEMATICAL DETAILS

In this appendix we list the coefficients of the expansion
in Eq. s15d for the free energyF that enter the definitions of
both the critical and singular lines for the model studied here.
We distinguish explicitly two cases: the one whereS=S0
Þ0 and the one whereS=0. In the former case, repeated use
of Eq. s35d is made.

1. S=S0

F1sS0,b,ld =
1

2
ST8sb,ld =

1

24
lf24 +s3 − 10b − 14S0bdlg,

F2sS0,b,ld =
f945 + 18bs8S0

2 − 135S0 − 7d + 12S0b2s26 + 287S0 − 112S0
2d + 8S0

2b3s392S0
2 + 185S0 − 1dgl4

18432S0
2 ,
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F3sS0,b,ld =
f− 45 +bs6 + 132S0 − 12S0

2d + 28S0b2s2S0
2 − S0 − 1dgl2

144S0
,

F4sS0,bd =
1

2
SSsbd =

1

18
f15 +s− 2 − 2S0 + 4S0

2dbg.

2. S=0

F1sb,ld =
1

2
ST8sb,ld = lS1 −

2bl

5
D ,

F2sb,ld =
4b3l4

175
,

F3sb,ld = −
8b2l2

105
,

F4sbd =
1

2
SSsbd =

1

3
−

2b

45
.

APPENDIX B: CRITERIA COMPARISON

In this appendix, more pedagogical in character, we
briefly recall the definition of tricritical points and we com-
pare the criterion presented here to locate them with those
already known from the literature on critical phenomena.

In general, tricritical points occur wheneverthreecoexist-
ing fluid phases become simultaneously identicalf14g. A tri-
critical point is thus different from both a critical point,
where only two coexisting phases become identical, and a
critical end point, where two phases become identical, in the
presence of a third dissimilar phase. Ordered soft matter sys-
tems other than fluid mixtures can also exhibit tricritical
points: there, three ordered phase become identical. Often
two such phases are conjugated by a symmetry transforma-
tion: when this is the case, the tricritical points are referred to
as being symmetricf14g. Symmetric tricritical points are
common in liquid crystal phases, where the underlying mo-
lecular symmetry is more likely to induce themf20,22–24g.
In Griffiths’ terminology f18g, a tricritical point is also a
point on a phase diagram where a first-order transition be-
comes second ordersthe equivalence between these two defi-
nitions of a tricritical point is well explained, for example, in
pp. 29–30 of Ref.f25g; Ref. f26g is another relevant general
referenced.

Within a simplified model describing the ordered phase of
a system in terms of a single order parameterc, the free
energyF can be given the following Landau expansion:

F = a2c2 + a4c4 + c6 + osc6d, sB1d

where only even powers ofc are retained sincec and −c are
thought of as corresponding to one and the same state. The
coefficientsa2 anda4 in Eq. sB1d depend on a set of physical

field variables, generally including the temperature. The co-
efficient of c6, which must be positive for thermodynamic
stability, is set equal to unity, as its specific value is inessen-
tial f15g. In this simplified setting, the criterion for the exis-
tence of a tricritical point is given by the equationsf14,15g

a2 = a4 = 0. sB2d

These equations have been extended to multicomponent fluid
mixtures f27,28g, though the reasoning was essentially left
unchanged.

In liquid crystals, however, the occurrence of tricritical
points is more likely related to ordered phases that need to be
described by more than a single order parameterf8,20,22g.
The criterion for tricritical points known in the liquid crystal
literature f11–13g appears as an extension of the classical
criterion sB2d based on the assumption that all order param-
eters can be seen as functions of a leading one, which is
different from zero only in the ordered phase and which then
makes all other order parameters differ from zero as well.
Under this assumption,F can again be given an effective
form as in Eq.sB1d, but with botha2 and a4 expressed in
terms of the coefficients of the Landau expansion ofF
thought of as a function of all independent order parameters.

Taking in our settingT8 as the leading order parameter
and denoting byf the function linkingdSªS−S0 to T8, so
that dS= fsT8d, we easily see that the path of equilibrium
states in the vicinity of the reference statesS0,0d, wheredS
=T8=0, is described by the equations

]sDFd
]T8

sfsT8d,T8d = 0,
]sDFd
]sdSd

sfsT8d,T8d = 0, sB3d

where DF is defined as in Eq.s31d. It follows from the
second of Eqs.sB3d that

]2sDFd
]sdSd]T8

+
]2sDFd
]sdSd2 f8 = 0, sB4d

where a prime denotes differentiation with respect toT8.
Since DF is symmetric inT8, also by Eq.s27d, Eq. sB4d
implies thatf8 vanishes at the reference statesS0,0d, when-
ever this lies on the critical line. Thus, evaluating bothsDFd9
and sDFd-8 at the reference state, we find that there

sDFd9 = S ]2F
]T82D

sS0,0d
,
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sDFd-8 = S ]4F
]T84D

sS0,0d
−

3

s]2F/]S2dsS0,0d

3S ]3F
]T82]S

D
sS0,0d

2

.

Requiring bothsDFd9 and sDFd-8 to vanish, as prescribed
by Griffiths’ criterion, reproduces our Eqs.s24d and s26d.

This shows that the existing criterionf11–13g, which as-
sumes the existence of a leading order parameter, reduces to
ours, which does not require that assumption. Thus, strictly
speaking, the criterion presented in this paper is potentially
more general than that commonly employed in the liquid
crystal literature. However, since the tricriticality criterion
was here more a tool than a goal, we abstain from claiming
to have contributed to the general theory of critical phenom-
ena.
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