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Tricritical points in biaxial liquid crystal phases
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We further pursue the analysis of a mean-field model recently proposed by SbratdtPhys. Rev. E67,
061701(2003] to describe nematic biaxial phases. This model, which is based on a simplified version of
Straley’s pair potential, is characterized by the prediction of a tricritical point along the transition line between
uniaxial and biaxial phases. We show that the same model predicts another tricritical point, but along the line
of the direct isotropic-to-biaxial transition. Our prediction is quantitative, as it stems from an analytical
criterion for tricriticality.
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I. INTRODUCTION firmed by both a Monte Carlo simulatid®] and an experi-
o mental study{10].

The search for thermotropic biaxial liquid crystals has re-  The occurrence of a tricritical point in the phase diagram
cently received a fresh impetus from new experimental eviyf piaxial nematics calls for a more systematic study to iden-
dence that appears to support their existejiced]. As re- iy all such points and the sides of the transition lines that
marked Dby Luckhurst, “The announcement has createghgeed correspond to second-order phase transitions. This pa-
considerable excitement, for it opens up new areas of botBer is devoted to such a study.
fundamental and applied research. It seems that a Holy Grail The paper is organized as follows. In Sec. II, we recall the
of liquid-crystal science has been four{e]. ~model for biaxial phases employed here. In Sec. Ill, we di-
_ The very existence of biaxial liquid crystal phases findsyress slightly from the main development of the paper to
its justification in the intimate structure of liquid crystal mol- jjystrate an analytical criterion to find tricritical points in a
ecules, which are indeed more similar to flat platelets than Qetting sufficiently general to encompass our biaxial model
slender rods. Thermal fluctuations prevent this microscopigg g special case. In Sec. IV, with the aid of the criterion
symmetry from emerging at the macroscopic scale, if rotajjjyminated in Sec. Ill, we predict the existence of a tricritical
tions of molecules about their long axis are efficient enoughyoint for biaxial liquid crystals in a range of parameters not
to create an effective rotationally symmetric molecule able 1Qet explored. Finally, in Sec. V, we draw the main conclusion
replace the actual flat molecule in its interactions with thegf thig paper and comment on the perspectives that it opens.
neighbors. If no remains are left at the macroscopic scale ot completeness, in a closing Appendix, we also contrast
the peculiar microscopic symmetry, no thermotropic biaxialihe criterion presented here with the known extensions
phase can be expected to result from collective moleculq_rll_la of Griffiths’ criterion [14,15.
cooperation. Only if molecular rotations are somewhat ham-
pered by mutual molecular interactions is there hope that a Il. MODEL FOR BIAXIAL NEMATICS
biaxial phase manifests itself. . .

The first theoretical prediction of biaxial nematics is [N Ref. [8], Straley’s molecular pair potentigll6] has

unanimously attributed to Freisg5,6]. A broad review of ~Peen studied beyond the range of validity of both London’s
both theoretical and experimental attempts made to unveffiSpersion force approximation and Freiser’s motb],

the secrets of these elusive phases can be found i Ref. which are |nt|mately conne(_:ted to one another. The general
More recently, a mean-field model for biaxials was proposed0rm of Straley’s pair potentiaV’ can be expressed by repre-
that departs from most theoretical avenues taken in the paSgnting each interacting molecule by a pair of traceless, sym-
[8]. This model predicted &icritical point in the transition Metric, second-rank tensofg, b), where

from uniaxial to biaxial nematics, that is, a point where the 1

transition changes from first to second order. The existence g:=mem-—I (1)

of this point, which was the major novelty introduced in the 3

theory of biaxial phases in Ref8], has so far been con- s purely uniaxial around the long molecular ais and

b:=e®e-e ®e, (2
*Electronic address: g.dematteis@sns.it is fully biaxial and orthogonal t@. The orthonormal basis
TElectronic address: virga@imati.cnr.it {e,e, ,m} is the eigenframe of any molecular polarizability
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tensor. Letting(q,b) and(q’,b’) represent two interacting value of 8, by a second-order transition to a biaxial phase
molecules, we writd/ as characterized byl’ # 0 and by bothT andS' almost vanish-
_ , , , , ing. This scenario changes qualitatively whergrows: the
V=-Uolq-q'+¥q-b"+b-q’)+Ab-b'}, 3 transition to the biaxial phase becomes first order, as shown
whereU,>0 is a typical interaction energy, aindandy are by solving numerically the equilibrium equations, thus dis-

model parameters. closing a tricritical point.
Macroscopically, the liquid crystal is described by two  Although, strictly speaking, all admissible states are de-
order tensors, both defined as ensemble averages: scribed by four scalar order parameters, two, nanielgnd
S', can be set equal to zero at all equilibrium phd&dsand
Q:=(a), B:=(b). the free energyF in Eq. (8) turns out to be a function db
Under the assumption th& andB have a common eigen- andT’ only, even inT’. Henceforth we shall call
frame {e,,e,,e,}, which is plausible in the absence of any F=AST AN ©)

external distorting cause, they can be represented as follows:
1 the function obtained from Eq@8) by settingy=0 and S
Q=S(ez®ez—§l)+T(ex®ex—ey®ey), (4 =T'=0. , , o
It would be desirable to apply an analytical criterion to
find all tricritical points in the phase diagram associated with
the free energy in Eq9) for all positive 8 and\. The clas-
sical criterion for tricriticality put forward by Griffiths

R [14,18 applies only to free energies depending on a single
whereS, T, S, T’ are the order parameters of the syst€In. ,qer parameter. Extensions of this criterion to free energies

represents th'e average quadrupolgr.distribution of the 1ongiih more than one order parameter have already been pro-
molecular axis: its degree of biaxiality measured Bye- 456 in the literaturkL1-13, under the assumption that one
flects the lack of axial symmetry in the orientational distri- ;.qar parameter is dominant and all others depend on it. For
bution function.B reflects on a macroscopic scale the intrin- clarity, in the following section we derive a criterion appro-
sic biaxiality of molecules and the role it plays in the yiate o our case, where the two order parameters are in
molecular interaction: likeQ, in general,B has both & inciple independent of one another. In Appendix B we

uniaxial ‘and a biaxial componens is precisely Maier-  gpqy, for completeness that the criterion known in the case of
Saupe's order parametg7]: whenT, S, andT” all vanish, 5 gingle dominant order parameter agrees with ours.
the resulting phase is purely uniaxial. We would call a phase

uniaxial even when only andS’' do not vanish, though the

B:S’<ez®ez—%l>+T’(ex®a(—ey®ey), (5)

origin of S’ is to be retraced in the intrinsic molecular biaxi- . TRICRITICALITY CRITERION
ality. Similarly, T and T’ express degrees of biaxiality of two ) _
different origins. Here we consider a smooth free-energy functimas in
In the mean-field approximation adopted in REg], a  Ed.(9), not necessarily given in the form of E(). Of this
single molecule experiences the pseudopotential latter, we only retain the following symmetry property
U(g,b) ==Uy{Q g+ ¢Q-b+B-q)+\B-b}. (6) FST.BN=F(S-T,B.\N), (10)
Accordingly, the partition functiorZ and the free energg  which makes equilibria witfi’ =0 the natural candidates for
are states whence a second-order phase transition could develop.
At equilibrium, for givenB and\, the order parameters of
Z(Q,B,B,\, ) :f expBQ -q+¥Q -b+B-q) the system solve the equations
' 0F
+)\B b]}, (7) E(SIT vﬁv)\)zoa (11)
F(Q,B,B,\,y)=U 1Q Q+9Q B+§B B oF
AR P 2 —(ST.BN=0. (12)

1 | Z(Q,B,B\,7) . .

—-—1In 2 /[ (8 These equations may possess more than a singlé $pbt),

P each of which represents an equilibrium phase. We loall
whereT is the manifold described by all possible molecularcally stablea phase wherg attains a relative minimum and
orientationse,e, ,m}, B:= Uy/ kgt, g is the Boltzmann con- globally stablea phase whereF attains its absolute mini-
stant, and is the absolute temperature. In RE8], the case mum. We assume that the system always admits a globally
where y=0 and\ ranges in the interval0,3] was exten- Stable phase. First lety be given. Suppose that for gt
sively considered and a tricritical point was discovered in the> 0 there is an equilibrium phase described$ySy(8,\o)
phase diagram. More precisely, it was shown that for smaland T'=0. Conventionally, we say thd&,,0) represents a
enough values of the classical Maier-Saupe first-order tran- reference statéor the system. It may represent a stable phase
sition from the isotropic phase is followed, at a large enouglof the system and it may not: it could be any equilibrium
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state of the system whose vicinity is worth exploring. Weplane(8,\). More properly, we should momentarily think of
denote by[Ho] the Hessian matrix of at the point($,0). A\ as being freed from the assigned valag and of
By the symmetry requiremelil0), [Ho] is diagonal, and its  (S(8,)\),0) as the continuation im of the equilibrium so-

two eigenvalues are given by lution (S(8,N\g),0). Thus, Eq.(23) explicitly becomes
SuBrg = L (S(BA00.BN (13 ”r -
S B’ 0/ *— (982 S) ﬁ! 0/ ’B' 0/ AF(B!)\) = W(&)(ﬁ!)\)!Oaﬁv)\)g(s)(ﬁa}\)volﬁl)\)
PF (_f )2
(B = (BN 0BN) . (14) 3 g2 SBN0AN | =0 (24

Our strategy will be to look for other equilibrium phases nearwhen(ﬂ‘)\") does not belong to the singular line, the solu-

a given reference state and, if there are any, to see which I%on to Eq.(22) is admissiblethat is, it deliversT’*>0, only
likely to be locally stable. The success of this strategy will
clearly depend on the choice of the reference state. We ex- F,F,AF <O0. (25)

pand the free energ§ in power series abouS,,0): o )
Moreover, the equilibrium phase is close to the reference

F(S+ 8ST') = F(S),0) + Fi T2+ F,T' 4+ F5T'26S state(S,,0), if F, is infinitesimal. For this reason we choose
FFEL(592 + Fo(69* + F.T'2(592 + F- 593 the reference stat&, 0) such that(8,\) is near thecritical
(99 505 o159 129 line, which is defined by the conditions
+0(5), (15 )
FF
where use has been made again of the symmetry requirement 3p(BN) = F(So(ﬂ.k),oﬁ, N =0, (26)

(10). The coefficients{F};-; . ; are related to the partial
derivatives of 7 with respect toS and T’ at the reference 2F

state: they are all functions @f3,\y). In particular, also by N) = 2 ).082) >0 o7
Egs.(13) and(14), 248, P (S(B:M),0,8,0) >0, (27)

1 where the latter ensures that the equilibrium phase
Fi:= EET'(tho)v (16) (S(B,N),0) is locally stable against all perturbations in tBe
order parameter. Whe(B,\,) lies precisely on the critical

1(F line, F, vanishes in Eq(22) and the equilibrium phases re-
F,:= —<—,4) , (17)  duce to the reference state: all equilibrium solutions corre-
24\ 1"/ 5,0 sponding to the critical line can be thought of as states

whence additional equilibria are to bifurcate. Choosing
1( PF ) (B,\o) near the critical line captures the bifurcation onset,
(%0

2

37 2\gT20s

(18) and so makes successful the strategy of finding more equi-
librium phases near the reference state.
As a consequence of inequalit®7), F, is positive in Eq.

Fyi= %25(,3,)\0)- (19) (20) and this reduces the admissibility conditi2b) to

) o F,AF < 0. (28
If there exist equilibrium phases near the reference state, they

can be found by requiring the function in E(L5) to be  This inequality is central in the following stability analysis.

stationary, that is, by solving the equations At the lowest approximation, the Hessian matrixJfcom-
) 3 ) ) puted at(S+ 43S, T'), where(8S,T') solves Eq(22), is
F3T, + 2F458+ 4F5(5S) + 2F6T, oS+ 3F7((5S) = 0,
(20) [H] :( 2Fa 2FsT ) (29)
2F;T' 2F, + 12F,T'?+ 2F38S

’ 13 ’ ’ 2
FiT' + 2F,T"°+ F3T' 85+ FeT' (697 = 0. (21 sinceF,>0, the sign of dét] suffices to characterize the
Under the assumption that # 0, to the lowest approxima- local stability of (S+4S,T'):
tion, these equations reduce to the following linear system: defH] = 4F,F, + 6T/ 2(4F ,F , - F%) = —8F,F,. (30)

(2':4 Fs )( 58) - ( 0 ) (22) Moreover, within the same approximation, the energy differ-

Fs 2F,/\T? Fy ence reads as
It is apparent from Eq.(22) that an additional single- F§F4
equilibrium phase fails to exist whenever AF:=FS+8ST) - FS,0=- AF (31)
AF := 4F,F,-F3=0. (23)

Our assert is that the intersection between the critical and
This condition actually identifies thsingular line in the the singular lines, if not empty, is constituted of tricritical
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Thus, C is a tricritical point, because there two different
transition lines meet: one is first order, the other second or-
der. In Fig. 1, according to Griffiths’ notatidi.8], first-order
transitions are represented by a solid line, while second-order
transitions are represented by a broken line.

In conclusion, thericritical manifold is defined by Egs.
(24) and (26) and the conditions

1/p

PF
W(S)(B!A)!Ovﬁl)\):or (323)

[ 080> 0
&TIA(S)(ﬁ,)\), 1B!)\) 0.'52(3)(3!)\)! !:81)\)

A

3 2
FIG. 1. The tricritical pointC is identified as the intersection - 3( aT’ZaS(SO(’B’)\)’O’B')\)> >0 (32b)
between the critical line® and the singular lineS in the plane

(\,1/B). A1U A, is the admissible set, where there is an equilib- determine the portion of the critical line consisting of
rium phase near the reference state. The heavy dashed line issgcond-order transition points.

second-order transition line, while the heavy solid line is a first- Finally, we note for later use that a better approximation
order transition line, whose existence is predicted by the argumentg,, the equilibrium phase near the reference state can be

developed in the text. obtained in the admissible set from E§80) and (21):
points, which represent states where the character of a phase 55= FiFs (33)
transition changes from first to second order. In Fig. 1, both 4F,F, - F3- 2F F¢’

the critical lineC and the singular ling&s are represented in

the plane(\,1/8). We assume that these curves cross at the (F\Fo—2F,F) F

point C. AF vanishes alongS, and 3 vanishes along’. T2= L6 5 z4 1 (39
Near C, a tubular neighborhood df is divided into four 4FoF,—F3-2F FeF;

parts byS andC, which we call Ay, Aj, As, and As. FOr  rhege formulas are useful in sketching the bifurcating solu-
definiteness, we assume thag, >0 in A,UA; and 21 ion branches and in continuing them numerically. A similar

<0 in A,UA, while AF>0 in A,UA; and AF<0 in jnr0vement of the lowest approximation employed above
A;U A, By inequality (28), AU A, is theadmissible set -5 pe gbtained for both the determinant of the Hessian ma-

that is, the set where there are equilibrium phases near thgy anq the energy difference along the bifurcating branches
reference state. By Eq§30) and(31), in .A; the additional [19].

equilibrium phase is locally stable since [d¢{>0 and it
possesses less energy than the reference state/sifieed.
Moreover, since ther&, <0, the reference state has be-

come unstable. Clearly, inl, a further stable phase bifur- | this section we apply the criterion presented above to
cates from the_reference ste_lte. Similarly, .4 de(H_]_<Q the free energyF in Eq. (8) for y=0 and\>0. We shall
andA7>0, while 21, >0. This means that the equilibrium choose as reference state either of the equilibrium phases

phase represents an unstablg equilibrium with more energyredicted by Maier-Saupe’s theory, to which the theory for
than the reference state, while the reference state is sti§fiaxial nematics in Sec. Il reduces whem\=0.

stable. Here no bifurcation occurs. Away from the admissible - As is well known, according to Maier-Saupe’s theory, the

set, the reference state is not accompanied by any other equéntropic phase corresponding$e0 is accompanied by an-
librium phase in its vicinity. The reference state itself is lo- gther |ocally stable equilibrium phase as soon gis g
cally stable inA; and unstable ind,. Since here we assume ~ g 73, This is the oriented nematic phase, which is charac-

that a globally stable phase always exists for the systemgrized by the largest positive ro8t(8) of the equilibrium
when the parameters are chosenAp, this phase must lie  gqyation

away from the reference state. On the other hand4.rthe

reference state could be either locally or globally stable. dF
Taking now the reference state s as globally stable, s =0,

we conclude from the foregoing discussion that it migrates

slightly upon crossing the critical lin€ from A into A;,  which for A\=0 becomes

whereas it jumps abruptly upon crossing the p@rtom A5

IV. TRICRITICAL POINTS

in A,. Such a behavior is only compatible with the presence ES+ 1 . 1 expSp) 0 35
of a first-order transition line emanating fro@ within A, 37 3 28 \’WSﬂErﬁ(\/s_ﬁ) -

and with the interpretation of the portion of the lidethat
separatesd, and. 45 as a second-order transition line. where
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FIG. 2. Phase diagram in the plafe, 1/8) associated with a model for biaxig8]. The critical line relative to the uniaxial stag
=S, and T’ =0 starts from the origin and ends B : it is confined to the stable manifold> 8. The heavily dashed portion of this line,
bounded by the Iinqéf:,B(l), marks the second-order transition between uniaxial and biaxial pl&asissthe first tricritical point. The critical
line relative to the isotropic phase=T'=0 is confined to the stable manifogi< 15/2: it starts from the poinE, and goes to infinity. It
hosts the second tricritical poif at,8=,8£2); the regions4,, A,, A3, and.A,4 have the same meaning as in Sec. lll. The heavy dashed line
starting fromC, represents second-order transitions between isotropic and biaxial phases. The heavy line represents first-order phase
transitions computed for€@ X\ <1/3[8]: a bifurcation analysis is needed to know how the poktndC, are to be joined.

2 (* 3. =0 39
Erfi(x) = — | e’dt forallx e R. (36) T (39

VJo

For B> B.~6.81, the nematic phase has indeed lower freeand
energy than the isotropic phase, which is still locally stable,
and so the system undergoes a first-order phase transition.
For B> B«= 2 , the isotropic phase becomes locally unstable A
and another equilibrium ordered phase with a negative order 2764832[2025 +180- 3+ 175, + 35) 8+ 123 - 1845,
parametelS_(B) arises; in the absence of any external field,
this phase never attains the least energy, and so it fails to be  — 65252 + 74S%) 3% + 80S,(3 + 975, + 18152 + 7SY) B°
globally stable. Whem.=0, the only phase transition under- e _
gone by the system occurs Bt 3;, whereS condenses in +165;(- 65 - 195, + 35 + 25458 = 0, (40)
S,.
Taking as reference state the uniaxial phase described b

. : . r%spectively(see also Appendix A Thus, the tricritical
:Eg szg(sSi';(nB )mg)trl\g: ]c.ompute the following eigenvalues of points are identified as the common roots of E@) and
0 .

(40).
2[5 B Figure 2 shows both critical and singular lines described
B)==| =+ 2(2S, - - , y Egs.(39) and (40) on the plane(A,1/B). In particular,
25()323(2822&1) 87 b (39 and (40) he plane(\,1/p) icul

since the critical line is meaningful only wheis>0, the
curve corresponding to Eq39) is restricted to the region
1 where 8> f°, and so it ends at the poif;, where 3=4".
(BN = 1_2)‘[24+(3 —10B- 1458\, (38) Moreover, since foh >0 the roots of Eq(40) are indepen-
dent of\, the singular line has the equati@* 3, where S,
where 35>0 for 8> p"~6.73. The critical and singular is the root of the function of8 within brackets in Eq(40).
lines are represented by the equations By use of the asymptotic behavior &f for g— <o,
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1 6 The criterion presented here can only predict the existence
S(B) = §<1+ \/1——), (41)  of this second tricritical point, where the phase transition
P between isotropic and biaxial phases becomes second order.
it is easily shown that there exists a single rg@@t. The It says nothing on how to complete the phase diagram in the

tricritical point C, in Fig. 2 has the following coordinates: plane (\,1/8) for §<)\<)\§2): this requires a bifurcation

analysis of the equilibrium phases, which will be undertaken
(Bgl):}\gl)) = (7071020: (42) e|Sewher€{19]_

with S=S+(ﬂfl))z0.53. It coincides with the point found in
Ref.[8] by inspecting the numerical solutions of the equilib-
rium equations. By applying E¢32b), we conclude that the It was remarked in Ref8] that the model proposed there
portion of the critical line that marks a second-order transifor biaxial nematics has a striking resemblance to McMill-
tion between uniaxial and biaxial phases is the one heavilan's model for smectid phaseq20], in that it predicts a
dashed in Fig. 2. This figure also dep|cts the lines of firstsimilar phase diagram with a tricritical point. The original
order transitions computed for<O\ <3 in Ref. [8]. motivation of our paper was to find a criterion to locate tri-
A question that was not addressed in He&f.is whether  critical points for biaxial liquid crystal phases, sufficiently
the transition between isotropic and biaxial phases can pogeneral to confirm the tricritical point already known and
sibly become second order To answer this question, we algsossibly to predict other such points still unknown.
study this model foP\> and we take the isotropic phase as  The main outcome of our study was to predict the exis-

V. CONCLUSION

reference state in ourcrlterlon We compute bbgand>1/,,  tence of another tricritical point in the phase diagram for
for S=T'=0: biaxial nematics according to the model employed in Ref.
2 [8], which should occur in a range of parameters not yet
SABN) = _72:(0 0= 1_ 2_'3, (43) explored. A bifurcation analysis of the whole class of equi-
3 45 librium phases predicted by the model in RE8] is still
needed to complete the phase diagram. This study, which just
PF 223 started, will be the object of a future pagdds].

(44) Another question soon to be addressed concerns the sec-
ond tricritical point we predict along the direct transition

It follows from Eq. (43) that S¢>0 for /g<1?5 and that the Dbetween the isotropic and biaxial phases: does it persist when

Sr(BN) = F(O'O) =A-

critical line is represented by the equation the parametey is also switched on? It has long been known
that for A\=0 the term proportional toy in Straley’s pair
1_2x (45) potential does not promote biaxial pha$2s]. It remains to
,3_ 5° be seen whether increasingfor )\>)\§2) would cause the
i o . reappearance of a uniaxial phase between the isotropic and
The singular line is nowsee also Appendix A biaxial ones. This would bound the extent of the direct
B4 (348 - 109 = 0. (46) uniaxial-to-biaxial transition, which is another distinctive

feature of the model proposed in RE8).

APPENDIX A: MATHEMATICAL DETAILS
105 17)

It is clear that Eqs(45) and (46) have only the root
34721 (47) In this appendix we list the coefficients of the expansion

(BN = (
in Eq. (15) for the free energyF that enter the definitions of
which identifies a second tricritical poil@,. By Eq. (32b), both the critical and singular lines for the model studied here.
the heavy dashed line emanating in Fig. 2 frGgrepresents We distinguish explicitly two cases: the one whe3eS,
the locus of second-order transitions between isotropic ane- 0 and the one wherg=0. In the former case, repeated use
biaxial phases. of Eq. (35) is made.

1.8=S,

Fi(S.B.N) = —ETr(B )= —k[24+(3 108 - 14S8)\],

[945 + 183(8S - 1355, — 7) + 125,8%(26 + 28 — 1120) + 8B3(3925% + 1855, - 1)]>\4
F2(S)!B1)\) - 1843&
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[ 45 +B(6 + 1325 - 12F) + 285,842 - S - DI\?

Fo(S. BN = 1445,

1 1
FilSo.8)= 534(B) = 5[15+(-2 - 25+ 45)].

2.S=0 field variables, generally including the temperature. The co-
efficient of °, which must be positive for thermodynamic
Fi(B\) = }ET'(ﬂJ\) - )\<1 _ Zﬂ) stability, is set equal to unity, as its specific value is inessen-
2 5 tial [15]. In this simplified setting, the criterion for the exis-
tence of a tricritical point is given by the equatidrist, 15
_ 4B3)\4
Fa(BN) = 175 " a,=a,=0. (B2)
822 These equations have been extended to multicomponent fluid
F3(B\) = - , mixtures[27,28, though the reasoning was essentially left
105 unchanged.
In liquid crystals, however, the occurrence of tricritical
1 1 2B points is more likely related to ordered phases that need to be
FulB) = EES(B) ~37 45 described by more than a single order paramge20,23.

The criterion for tricritical points known in the liquid crystal
literature [11-13 appears as an extension of the classical
APPENDIX B: CRITERIA COMPARISON criterion (B2) based on the assumption that all order param-
) ) _ _ eters can be seen as functions of a leading one, which is
In this appendix, more pedagogical in character, Wegifferent from zero only in the ordered phase and which then
briefly recall the definition of tricritical points and we com- ,5kes all other order parameters differ from zero as well.
pare the criterion presented here to locate them with thosgqer this assumptionF can again be given an effective
already known from the literature on critical phenomena.  5rm as in Eq.(B1), but with botha, and a, expressed in
_Ingeneral, tricritical points occur whenewvireecoexist-  terms of the coefficients of the Landau expansion of
ing fluid phases become simultaneously identiddl. Atri-  hqyght of as a function of all independent order parameters.

critical point is thus different from both a critical point, Taking in our settingT’ as the leading order parameter
where only two coexisting phases become identical, and g,q denoting byf the function linking8S:= S-S, to T', so

critical end point, where two phases become identical, in thegy, ¢ sS=f(T'), we easily see that the path of equilibrium

presence of a third dissimilar phase. Ordered soft matter sy§;tes in the vicinity of the reference std®,0), where 8S
tems other than fluid mixtures can also exhibit tricriticaI:T,:() is described by the equations

points: there, three ordered phase become identical. Often
two such phases are conjugated by a symmetry transforma- AP AAF)

tion: when this is the case, the tricritical points are referred to —(f(T"),T)=0, ——(f(T"),T")=0, (B3)
as being symmetri¢14]. Symmetric tricritical points are ar’ (9

common in liquid crystal phases, where the underlying mo-

lecular symmetry is more likely to induce thei20,22—24.  Where A¥ is defined as in Eq(31). It follows from the
In Griffiths’ terminology [18], a tricritical point is also a second of Eqs(B3) that

point on a phase diagram where a first-order transition be-

comes second ordéihe equivalence between these two defi- FAF)  FAF)

nitions of a tricritical point is well explained, for example, in AT’ * a892 0, (B4)
pp. 29-30 of Ref[25]; Ref.[26] is another relevant general

reference. where a prime denotes differentiation with respectTto

Within a simplified model describing the ordered phase ofgjnce A F is symmetric inT’, also by Eq.(27), Eq. (B4)
a system in terms of a single order parameferthe free  impjies thatf’ vanishes at the reference sté8,0), when-
energy 7 can be given the following Landau expansion:  ayer this lies on the critical line. Thus, evaluating baiF)”

F=ay+agf+ g+ o(yf), (81 and (AF)™" at the reference state, we find that there
where only even powers af are retained since¢ and —/ are PF

thought of as corresponding to one and the same state. The (AF)" = <?) ,
coefficientsa, anda, in Eq. (B1) depend on a set of physical J (S0
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PF 3 This shows that the existing criterigii1-13, which as-
(AF)"" = <—,4) T RS - sumes the existence of a leading order parameter, reduces to
I/ (%0 (719 )<Sovo> ours, which does not require that assumption. Thus, strictly
Rr \2 speaking, the criterion presented in this paper is potentially
x(,—2> . more general than that commonly employed in the liquid
IS/ (5,0 crystal literature. However, since the tricriticality criterion

was here more a tool than a goal, we abstain from claiming
Requiring both(AF)” and (AF)"’ to vanish, as prescribed to have contributed to the general theory of critical phenom-
by Griffiths’ criterion, reproduces our Eq$24) and (26).  ena.
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